You may also be interested in more specific descriptions of currently-active research, the people that made this work possible, and our publications.

The Laboratory for Evaluation of Pharmacological Agents in Remediation of Disease (LEoPARD) is a biochemistry-focused research group at Saint Michael’s College in Colchester, Vermont (Burlington metropolitan area) — and our researchers are outstanding undergraduate students. Our research can be described by several exciting overarching themes, with elegant overlap between active research projects.

The broad themes of our research are described below. In addition to the broad themes, you may also be interested in reading more about the specific descriptions of currently-active research.

1. Novel antidiabetic therapeutics


While there are currently several “gold standard” drugs on the market for type 2 diabetes mellitus — such as metformin or Glucophage™ — they are not without their respective risks and side-effects. We are especially interested in discovering and characterizing new agents that can be used in the fight against diabetes and other diseases, and determining whether they are improved relative to existing pharmaceutical and nutraceutical agents.

2. Metabolic regulation by signal transduction and post-translational modification


Post-translational modification (PTM) is a hallmark of metabolic regulation. Protein structure and function can be rapidly and reversibly modulated by the addition or removal of small chemical groups, such as phosphoryl groups in the case of protein phosphorylation. Typically, these PTMs are part of a cascade, linking target proteins (e.g. glycolytic enzymes, gluconeogenic enzymes, etc.) to a receptor (e.g. the insulin receptor) via multiple relay enzymes — a process known as signal transduction. We are especially interested in how signal transduction can go awry in human diseases and how proper function can be restored — particularly as it pertains to insulin resistance (leading to type 2 diabetes) and reversal of that resistance by naturally-occurring and synthetic bioactive agents.

3. Medical devices and other biotechnologies


In addition to fundamental or basic research, our expertise also includes or applied research — this stems from past work at Micropharma Ltd, a biotech startup that was acquired by UAS Labs in December 2014. Past and current projects have involved the development of gut-friendly probiotics targeted against specific diseases — including diabetes, high cholesterol, hypertension, and liver disease. Additional work included the development of a gaseous nitric oxide-generating medical dressing with wound-healing and antimicrobial/anti-biofilm activity. Thus, amidst our fundamental research work, we always have translational and entrepreneurial goals in mind.

4. Nanomaterial-biomolecule interactions, nanotoxicology and nanopharmacology


Engineered nanomaterials (ENMs) are the core component of most modern-day nanotechnologies. With increasing use, there is elevated risk that ENMs are improperly disposed of and accidentally released into the environment. At the nanoscale, ENMs are at a comparable biological scale to subcellular biomolecules such as large proteins; they therefore have the ability to penetrate living cells and influence their physiology — potentially in a deleterious manner. We therefore study the mechanisms by which ENMs are nanotoxic — but by the same token, we also investigate how ENMs can be safely exploited as delivery vehicles to biological compartments (i.e. cell-specific targeting).


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s